

Living Carbon Capture

A Pilot Concept for Durable CO₂ Storage and Fire Risk Reduction

Version 0.1 – Exploratory briefing

Date: 2nd February 2026

Author: Geoff Rowlands B.A.

1. Purpose of this briefing

This briefing outlines a **pilot-scale concept** for exploring whether managed forests can act as a form of **durable carbon capture**, by combining continuous biological growth with **long-lived carbon storage in materials**.

The proposal is not intended as a substitute for emissions reduction, energy transition, or industrial decarbonisation. Instead, it examines whether **forest management and material use** can complement existing strategies by:

- Reducing wildfire risk and associated carbon losses
- Increasing the permanence of biologically captured carbon
- Producing useful materials with low embodied emissions

The aim is to define a **testable, low-risk pilot**, identify uncertainties, and invite technical critique.

2. Background and context

2.1 Wildfire emissions and carbon permanence

Wildfires are an increasing source of CO₂ emissions in many regions, releasing large quantities of stored carbon over short time periods and reducing the future capacity of forests to function as carbon sinks. In fire-prone landscapes, unmanaged biomass can represent a **volatile carbon store** rather than a stable one.

Current climate mitigation frameworks largely focus on:

- Reducing fossil fuel emissions
- Technological carbon removal (e.g. direct air capture)
- Tree planting and forest expansion

Less attention is given to **carbon permanence**, particularly the risk that existing biological carbon stocks may be rapidly lost through fire, drought, or disturbance.

2.2 Forest composition and fire behaviour

A substantial body of research indicates that:

- Forest composition and structure strongly influence fire behaviour
- Broad-leaved and mixed forests generally burn less intensely than resin-rich conifer plantations under comparable conditions
- Managed forests with reduced ladder fuels and canopy discontinuity tend to exhibit lower fire severity

These characteristics suggest that **forest management choices** can materially affect both fire outcomes and carbon retention.

3. The core concept

Figure 1. In a managed system, forests continue to absorb CO₂ while a portion of harvested biomass is transferred into long-lived materials, increasing carbon permanence.

3.1 Living carbon capture

This proposal explores whether trees can be treated as **living carbon capture systems**, provided that a meaningful portion of the carbon they absorb is transferred into **long-lived materials** rather than returning rapidly to the atmosphere.

The concept combines:

- Continuous biological growth
- Repeated, non-destructive harvesting
- Durable material use
- Fire-resilient forest structure

The intention is to move some forest carbon from **high-risk biological storage** into **lower-risk material storage**, while maintaining ongoing carbon uptake.

3.2 Management approach

The proposed approach focuses on **broad-leaved tree species** managed through traditional techniques such as:

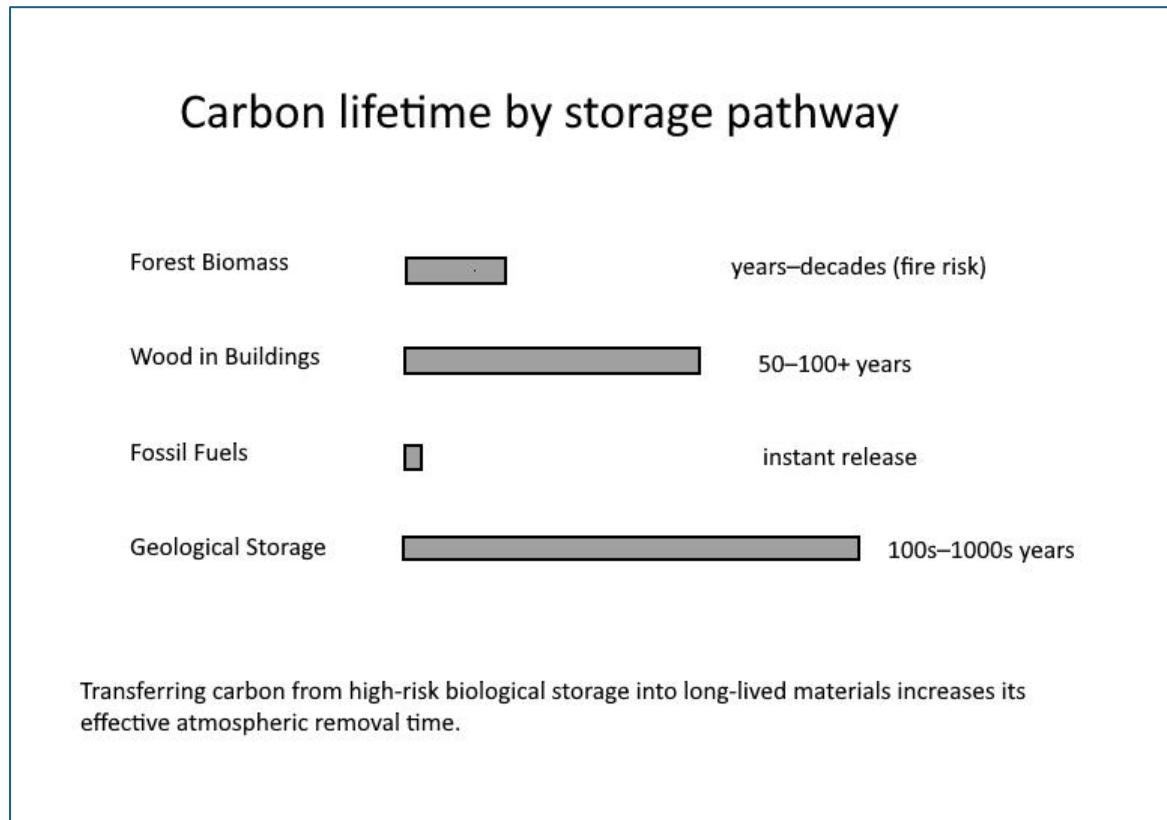
- **Coppicing** (harvesting stems at ground level with regrowth from the stool)
- **Pollarding** (harvesting above browsing height with repeated regrowth)

These systems:

- Maintain permanent root systems
- Allow repeated harvest cycles (typically 5–15 years)
- Support long-lived trees (often centuries)
- Reduce canopy fuel continuity

Such practices have a long history in Europe and elsewhere, but are rarely framed in contemporary climate terms.

4. Biomass use and carbon storage


4.1 Material pathways

To maximise carbon permanence, harvested biomass from coppicing and pollarding would be directed **exclusively into long-lived uses**, such as:

- Wood fibre insulation

- Engineered wood panels (non-structural in early pilots)
- Durable building components (e.g. cladding, boards)

Short-lived uses and combustion (including biomass energy) would be explicitly excluded within the pilot.

Figure 2 Comparison of Carbon Lifetime Storage Methods

4.2 Carbon storage characteristics

When used in buildings, wood-based materials typically store carbon for:

- Several decades at minimum
- Often 50–100+ years
- Potentially longer if materials are reused or recycled

In practical terms, this represents **above-ground carbon storage with durability comparable to many engineered sequestration approaches**.

5. Pilot project outline

5.1 Scale and duration

A pilot of **500–1,000 hectares** is proposed, large enough to generate meaningful data but small enough to manage risk.

Indicative duration:

- 10–15 years
- Initial results within 5 years

5.2 Location criteria

Suitable pilot locations would:

- Be fire-prone but not arid
- Use non-primary forest or degraded land
- Have existing forestry capacity
- Be near demand for building materials

Regions such as Mediterranean Europe, western North America, southern Australia, or comparable climates may be appropriate.

5.3 Measured outcomes

The pilot would track:

- Biomass growth and harvest volumes
- Carbon retained in long-lived materials
- Forest structure and fuel characteristics
- Indicators of fire risk and resilience

Avoided wildfire emissions would initially be treated as **contextual evidence**, not credited removals, to maintain conservative accounting.

6. Indicative carbon impact (order of magnitude)

Based on existing forestry and materials data, managed broad-leaved systems may plausibly achieve:

- **5–8 tCO₂/ha/year** of biological uptake
- **3–5 tCO₂/ha/year** retained in long-lived materials

At pilot scale (1,000 ha):

- **30,000–50,000 tCO₂ stored over 10 years**, subject to verification

These figures are indicative and intended to frame testability rather than to make performance claims.

7. Relationship to other climate strategies

This approach is intended to be:

- Complementary to emissions reduction
- Complementary to technological carbon removal
- Aligned with climate adaptation and fire management

It does not eliminate the need for:

- Energy system decarbonisation
- Industrial emissions control
- Long-term negative emissions technologies

Instead, it aims to **reduce risk and protect existing carbon stocks** while contributing modest but durable storage.

8. Open questions and uncertainties

Key uncertainties that a pilot would need to address include:

- How durable are different biomass material pathways in practice?
- How should harvested biomass be treated in carbon accounting frameworks?
- What management regimes optimise both fire resilience and carbon storage?
- Where does this approach perform poorly or create trade-offs?

This proposal is explicitly framed as **exploratory**, and negative findings would be as valuable as positive ones.

9. Why a pilot is justified

A pilot of this type:

- Is relatively low cost compared to engineered capture pilots

- Generates valuable data even if carbon benefits are modest
- Improves fire resilience regardless of accounting outcomes
- Produces useful materials rather than waste streams

As such, it represents a **high chance of positive outcome experiment** in climate risk management.

10. Next steps

Possible next steps include:

- Technical review by forestry and materials experts
- Identification of suitable pilot sites
- Refinement of conservative carbon accounting methods
- Exploration of public or philanthropic funding

This briefing is intended as a starting point for discussion, not a finished proposal.

Contact

For comments, critique, or references to existing work in this area, please contact:
geoff.rowlands@guymo.co.uk
